
Improving the runt-time performance of the object-detection model 
through pruning and quantization 

 

Problem Statement 

Deep neural networks (DNNs) have attracted a lot of attention in the recent years. The state-
of-art accuracies of the deep neural networks come from their millions of parameters and 
billions of MAC operations which makes them difficult to deploy on edge-devices.  
Deploying DNNs on resource-constrained devices will open a dozen of possibilities for real-
time applications in many fields. However, the use of the state-of-the-art models for real-time 
classification and object detection for real-time applications in resource-constrained devices 
is limited. In this work, the performances of the popular object detection will be accelerated 
using pruning and quantization techniques. Pruning is an important technique in which the 
unimportant parameters are removed from the network, and in quantization weights are 
stored with fewer bits.  

Background 

Object detection is a popular field in the deep learning has many real-time applications. There 
are number of object detection models proposed in the deep learning such as Fast RCNN, 
faster RCNN, SSD, YOLO etc. Out of the many object detection model available some are 
optimized for precision (mAP) and some are optimized for speed. Each object detection 
model has two parts that is detection of the object and classification. In object detection 
models, popular classification model are used as base classifier, VGG16, MobileNet, and 
ResNet are the popular choice among the many. Pruning is a popular way to make the model 
computational and power efficient by pruning filters which do not contribute much in 
reducing the error. Out of the various types of pruning, weight, node, layer, filter pruning is 
popular. Filter pruning doesn’t make the pruned model unstructured and can be utilized 
directly on the end-device without the need of any special hardware or software. 

Methodology 

The whole process can be divided into 3 parts. First unimportant filters of the CNN will be 
pruned from convolutional layers. Next the weights of the resulting pruned model will be 
stored using reduced bit representation (8-bit quantization). Before applying the quantization, 
the model will be fine-tuned. In the third part the, the original vs enhanced models will be 
compared against various parameters such as mAP, storage, MAC operations, and energy 
consumption. Finally, the original and enhanced model will also be deployed on mobile 
devices for real-time performance comparisons. Figure 1 shows the overall methodology. 

Step 1: Training the base models 

The base model will be trained from scratch on the PASCAL VOC dataset. For this purpose 
any deep learning framework can be used like Keras, TensorFlow, PyTorch etc., However, 
PyTorch is preferred compare to other frameworks due to its flexibility. Pre-trained models 
can also be used for this purpose. 



 

 

 

 

 

 

 

Fig. 1 Flowchart of the proposed approach 

 

Step 2: Pruning filters  

Once the base model is trained, now the important part is pruning the filters. It is important to 
decide the importance of the filters to be pruned form the convolutional layer, There are 
many criteria based on which the importance of the filter can be decided such their absolute 
sum, impact on the error etc. After pruning the filters a new model need to be crated and copy 
the weights from original model to new model of the remaining filters. There are several 
ways in which pruning can be applied, it can be applied on the original ImageNet trained 
classification model and the pruned models can be fine-tuned on the ImageNet dataset, 
However, training on ImageNet require adequate amount of computational resources, 
Secondly, the pre-trained can be fine-tuned using PASCAL VOC dataset. 

Step 3: Fine-tune the pruned model 

Pruning filters of the trained model degrades the performance of the model. In order to 
compensate the loss in the mAP due to the removal of the filters, a pruned model needs to be 
fine-tuned for more epochs. The process of pruning and fine-tuning can be iterative. 

Step 4 Quantizing fine-tuned models 

The weights of the DNNs are stored as 32-bit precision floating point numbers. However, it is 
found that the weights can be stored in reduced precision like 16-bit or 8-bit without 
significant loss in the model performance. To further improve the performances of the pruned 
and fine-tuned the model weights will be represented in 8-bit precision. 

Step 4: Deploying on mobile device 

The last part is the deployment of the model. After fine-tuning and quantizing, to compare the 
performance of the pruned models and effectiveness of the proposed approach, the pruned 
and original model will be deployed on real mobile-device. To deploy on the mobile 
TensorFlow lite or PyTorch can be used. 

Experimental Design 

Dataset and model 

Trained original model 

Quantize weights 

Prune unimportant filters 

Fine-tuned pruned model 

Deployment on edge device 



The first set of experiments will be performed on faster-RCNN and SSD-VGG16. After 
getting acceptable results, more efficient model will be taken into consideration for pruning 
such as SSD-Mobilenet, and YOLO. In the experiments PASCAL VOC dataset will be used 
to train and test the models. 

Evaluation Measures 

To compare the performance of the original and pruned models various evaluation measures 
will be used such as mAP (mean average precision), number of parameters in the original and 
the pruned model, number of FLOPs, and time taken to process the single image. 

Software and Hardware Requirements 

To large experiments on large models and datasets, GPU are required. In the absence of 
physical GPUs, there are many online platforms that could be utilized to conduct the 
experiments. It should also be noted that initial experiments can be performed on system with 
low computing power. 

Input: Original trained model 

Expected Output: An object detection model with improved performance 
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