
Fruit Counting for Automatic Inventory Management 

 
1 Problem Statement 

 

In the field of agriculture, yield estimation and mapping in orchards is vital for growers as it 

helps to utilize resources efficiently and improve returns per unit area and time. Having accurate 

knowledge of yield distribution and quantity, a grower can not only manage processes in the 

irrigation system such as chemigation, fertigation and thinning, but also plan ahead of time their 

harvest logistics, crop storage and sales. Producing yield information is currently done by 

manual sampling which is not only labour intensive but also expensive and time consuming. 

Such manual sampling also leads to inaccurate yield estimation. Hence, there is a need to 

develop machine vision systems to deal with the aforementioned problems in order to detect the 

fruits on each tree accurately, which in turn helps to reduce the errors in counting the total 

number of fruits in orchards. 

 

2 Background Work 

 

In traditional systems, fruit detection through key-point extraction and classification algorithms 

are often applied over vineyards and orchards. It exploits radial symmetries in the specular 

reflection of the individual berries to extract key-points, which are then classified as berries or 

not-berries. The detected regions are then used for yield estimation and prediction. Another 

approach uses simple color classifiers for key-point extraction for grape bunches and image 

patches are extracted around each key-point and a combination of color and texture filters are 

computed. The patches can then be classified as fruit or not-fruit using a trained classifier, such 

as a support vector machine (SVM) or a randomized KD-forest. 
 

With the advancement of parallel computing using GPUs, deep neural network architectures, 

which host a significantly larger number of model parameters, are showing potential in capturing 

large variability in data. In a recent work, authors used multi-layered CNNs for image 

segmentation, in which individual patches representing contextual regions around pixels are 

densely classified in an image. More recently, convolutional neural network (CNN) has been 

shown to yield improved segmentation performance when a spatial prior on the classes is 

available. In another work,  authors performed road image segmentation while incorporating the 

pixel positions to help the classifier in learning that road pixels are predominantly found near the 

bottom half of the images. 

 

3 Materials and Methods 

3.1 Datasets 

 

3.1.1 Data Collection and Dataset Preparation: Images of trees can either be collected from 

any image database or captured through camera. 
 

3.2 Methods 

 

Figure 1 demonstrates the framework that can be applied for developing machine vision system 

in oder to detect fruits on each tree in an orchard.  



 

3.2.1 Image preprocessing and Labeling: ZCA whitening can be used for preprocessing the 

data in order to  remove pixel-level correlations on the image patches and force unit variance. 
 

3.2.2 Training and Experimentation: In this step, training the convolution neural network for 

classifying an image as fruit or not-fruit. Subsequently, we can apply watershed transform 

method for yield estimation and test the performance afterwards. 
 

3.2.3 Evaluation Measures: Measures such as accuracy and mean recall score, mean precision 

will be computed .We use the final mean F1 score for the comparison of results across all of the 

different experimental configurations. 
 

3.2.4 Deployment and analysis on real life scenario: The trained and tested fruit counting model will be 

deployed in a real-life scenario for further analysis where both positive and negative cases will be 

leveraged for further improvement in the methodology. 
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4 Experimental Design  



4.1 Software and Hardware Requirements: Python based Computer Vision and Deep 

Learning libraries such as Pylearn2 will be exploited for the development and experimentation of 

the project. Training will be conducted on NVIDIA GPUs. 


