
Detecting Genes Responsible for Cancer Development 

 
1  Problem Statement 

 

Due to the advancement of micro-array and RNA-sequencing technology, it is possible to 

measure expression profiles of thousands of genes across a set of samples during disease 

progression, cellular development. Computational analysis of such transcriptome datasets has 

been found to be useful in understanding mechanisms underlying disease progression and  

identifying key drivers which trigger disease progression [1, 2, 3]. Although a lot of effort have 

been made to analyze gene expression data in order to distinguish normal cells from abnormal 

cells over the last two decades, it is a challenging task due to the high dimensionality and 

complexity of these data. Moreover, the presence of a large number of genes and typically a 

small number of samples lead to the phenomena called curse of dimensionality. Hence, there 

remains a critical need to improve accuracy and identify genes which play instrumental roles 

during cancer progression. 

 

2 Background Work 

Many approaches have been proposed for the classification of cancer cells and healthy cells 

using gene expression profiles [3, 4, 5, 6]. For instance, the self-organizing map (SOM) was used 

to analyze leukemia cancer dataset. A support vector machine (SVM) with a dot product kernel 

has been applied to the diagnosis of ovarian, leukemia, and colon cancer. SVMs with nonlinear 

kernels (polynomial and Gaussian) were also used for the classification of breast cancer tissues 

from microarray gene expression data. Due to the large number of genes, high amount of noise in 

the gene expression data and the complexity of biological networks, there is a need to deeply 

analyze the transcriptome data for identifying the genes which play key roles during cancer 

progression. To deal with some of the aforementioned challenges, principal component analysis 

(PCA) has been proposed for dimensionality reduction of expression profiles. However, PCA 

reduces the dimensionality of the data linearly and it may not extract some nonlinear 

relationships in the data, whereas other approaches such as Kernel PCA (KPCA) may be capable 

of uncovering these nonlinear relationships. K-nearest neighbors (KNN) unsupervised learning 

also has been applied to breast cancer data. Recently, researchers have applied PCA with a 

combination of autoencoder to capture non-linear relationships in data. But using a single 

autoencoder may not extract all the useful representations from the noisy, complex, and high-

dimensional expression data. One way to deal with this challenge is reducing the dimensionality 

incrementally which can be achieved by the multi-layered architecture of an stacked denoising 

auto-encoder (SDAE) [7] with reduced loss of information. 

3  Materials and Methods 

3.1 Dataset 

RNA-seq expression data can be obtained from The Cancer Genome Atlas (TCGA) database [8] 

for both healthy and cancer cells. 

3.2 Methods 



Figure 1 shows the general framework which can be used to analyze transcriptome data. 

 

3.2.1 Data preprocessing: After obtaining the raw dataset, quality assessment can be performed. 

This step includes removal of the low-quality sequences, exclusion of the poor-quality reads with 

more than a certain number of unknown bases and trimming the sequencing adapters and primers 

[6]. Once we obtain the preprocessed data, we can get the feature count matrix by mapping to the 

reference genome. Subsequently, Fragments-Per Kilobase of transcript per Million mapped reads 

(FPKM) or Reads-Per Kilobase of transcript per Million mapped reads (RPKM) normalization 

methods can be used to normalize the expression data. Afterwards, Synthetic Minority over-

sampling TEchnique (SMOTE) [9] can be used to transform data into a more balanced 

representation. 

 

3.2.2 Training & Testing: This is the most important step in classification in which of the 

SDAE [7], a dropout regularization factor can be used in order to randomly exclude fractions of 

hidden units in the training procedure by setting them to zero. This method prevents nodes 

overfitting from co-

adapting too much and 

consequently avoids 

overfitting. 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 1: Framework of gene detection system during  cancer progression 

3.2.3 Evaluation Measures: Accuracy, sensitivity, specificity, precision and F-measure can be 

used to evaluate the performance of the classifier. 

3.3 Experimental Design  



3.3.1 Software and Hardware Requirements: For this implementation, GPU can be used with 

Keras library with Theano backend running on an Nvidia Tesla K80. 
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