Project title

Lane Detection Using Deep Learning

Submitted to:

  • Dr. Gaurav Singal (Asst. Professor Bennett University)

Submitted By:

  1. Himanshu Singhal (IIIT Vadodara)
  2. Naman Saxena (ABES Engineering College)
  3. Anusree I (Vidya Academy of Science & Technology)

Project Description

Autonomous self-driving is in the trend for implementing it in our real life to remove all the hassles and accidents. Modern-day transport has come a long way but still far away from perfection and all-around safety. Lane Detection is a concept of demarcating lanes on the roads while the vehicle is moving. It has the capability of changing the vehicular movements on road, making them more organized and safe. This leap could provide for driver carelessness and avoid a lot of mishaps on the roads. Ride-hailing services like Uber and Ola can use them to monitor drivers and rate them based on driving skills. We have designed and trained a deep Convolutional Network model from scratch for lane detection since a CNN based model is known to work best for image datasets. We have used BDD100k dataset for training and testing for our model. We have used various metrics values for hyper-parameters tuning and took the ones which gave the best result. The training is done on Supercomputer NVIDIA-DGX V100. Idea By: Aditya Sharma, Microsoft

Project Poster

Get Latest Notification about

Please ignore if you have already signed up.

Announcements, news and innovations!

From in your inbox.

By submitting this form, you are consenting to receive marketing emails from: Bennett University. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email.