Project title

Age and Gender Classification

Submitted to:

  • Dr. Suneet Gupta (Asst Professor Bennett University)

Submitted By:

  1. Aman Agrawal (Thapar Institute of Engineering and Technology)
  2. Sherin Shoni (Saintgits College of Engineering)
  3. K. Kamaleshwaran (Mahendra Engineering College)

Project Description

The project is a deep learning solution to age estimation from a single face image without the use of facial landmarks and introduce the IMDB-WIKI dataset, the largest public dataset of face images with age and gender labels. If the real age estimation research spans over decades, the study of apparent age estimation or the age as perceived by other humans from a face image is a recent endeavour. We tackle both tasks with our convolutional neural networks (CNNs) of VGG-16 architecture which are pre-trained on ImageNet for image classification. We pose the age estimation problem as a deep classification problem followed by a softmax expected value refinement. The key factors of our solution are: deep learned models from large data, robust face alignment, and expected value formulation for age regression. We validate our methods on standard benchmarks and achieve state-of-the-art results for both real and apparent age estimation.

Project Poster

Get Latest Notification about

Please ignore if you have already signed up.

Announcements, news and innovations!

From in your inbox.

By submitting this form, you are consenting to receive marketing emails from: Bennett University. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email.