Project title

Fake News Detection

Submitted to:

  • Mr.Rohit Kaliyar (Ph.D. Scholar Bennett University)

Submitted By:

  1. Anant Agarwal (Thapar Institute of Engineering & technology)
  2. Shilpa A Nair (Saintgits College of Engineering)
  3. K.Niranjan (Mahendra Engineering College)

Project Description

Fake news is misinformation or manipulated news that is spread across the social media with an intention to damage a person, agency and organisation. Due to the dissemination of fake news, there is a need for computational methods to detect them. Fake news detection aims to help users to expose varieties of fabricated news. To achieve this goal, first we have taken the datasets which contains both fake and real news and conducted various experiments to organize fake news detector. We used natural processing, machine learning and deep learning techniques to classify the datasets. We yielded a comprehensive audit of detecting fake news by including fake news categorization, existing algorithms from machine learning techniques. In this project, we explored different machine learning models like Naïve Bayes, K nearest neighbors, decision tree, random forest and deep learning networks like Shallow Convolutional Neural Networks (CNN), Deep Convolutional Neural Network (VDCNN), Long Short-Term Memory Network (LSTM), Gated Recurrent Unit Network (GRU), Combination of Convolutional Neural Network with Long Short-Term Memory (CNN-LSTM) and Convolutional Neural Network with Gated Recurrent Unit (CNN-LSTM).

Project Poster

Get Latest Notification about

Please ignore if you have already signed up.

Announcements, news and innovations!

From in your inbox.

By submitting this form, you are consenting to receive marketing emails from: Bennett University. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email.